3.7.10 \(\int \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \, dx\) [610]

Optimal. Leaf size=151 \[ \frac {\sqrt {i a-b} \text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {\sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \]

[Out]

arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2)/d+2*arctanh(b^(1/2)*tan(d*x+c)^(1/
2)/(a+b*tan(d*x+c))^(1/2))*b^(1/2)/d-arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1
/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.36, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3656, 920, 65, 223, 212, 6857, 95, 211, 214} \begin {gather*} \frac {\sqrt {-b+i a} \text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {\sqrt {b+i a} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(Sqrt[I*a - b]*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + (2*Sqrt[b]*ArcTanh[(Sq
rt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - (Sqrt[I*a + b]*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*
x]])/Sqrt[a + b*Tan[c + d*x]]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 920

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[e*(g/c), In
t[(d + e*x)^(m - 1)*(f + g*x)^(n - 1), x], x] + Dist[1/c, Int[Simp[c*d*f - a*e*g + (c*e*f + c*d*g)*x, x]*(d +
e*x)^(m - 1)*((f + g*x)^(n - 1)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0]
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[m, 0] && GtQ[n, 0]

Rule 3656

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {\sqrt {x} \sqrt {a+b x}}{1+x^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int \frac {-b+a x}{\sqrt {x} \sqrt {a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\text {Subst}\left (\int \left (\frac {-a-i b}{2 (i-x) \sqrt {x} \sqrt {a+b x}}+\frac {a-i b}{2 \sqrt {x} (i+x) \sqrt {a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}+\frac {(2 b) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {(a-i b) \text {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {(a+i b) \text {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {(2 b) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {(a-i b) \text {Subst}\left (\int \frac {1}{i-(-a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {(a+i b) \text {Subst}\left (\int \frac {1}{i-(a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {i a-b} \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {\sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.56, size = 189, normalized size = 1.25 \begin {gather*} \frac {\sqrt [4]{-1} \left (\sqrt {-a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\sqrt {a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right )+\frac {2 \sqrt {a} \sqrt {b} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}}{\sqrt {a+b \tan (c+d x)}}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((-1)^(1/4)*(Sqrt[-a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] +
Sqrt[a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]) + (2*Sqrt[a]*Sqr
t[b]*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b*Tan[c + d*x])/a])/Sqrt[a + b*Tan[c + d*x]])/d

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 0.44, size = 1089481, normalized size = 7215.11 \[\text {output too large to display}\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \tan {\left (c + d x \right )}} \sqrt {\tan {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*sqrt(tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [B]
time = 6.91, size = 286, normalized size = 1.89 \begin {gather*} \frac {4\,\sqrt {b}\,\mathrm {atanh}\left (\frac {\sqrt {b}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}-\sqrt {a}}\right )}{d}+\mathrm {atan}\left (\frac {2\,\left (d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-\frac {-b+a\,1{}\mathrm {i}}{4\,d^2}}\,1{}\mathrm {i}-\sqrt {a}\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-\frac {-b+a\,1{}\mathrm {i}}{4\,d^2}}\,1{}\mathrm {i}\right )}{a+b\,\mathrm {tan}\left (c+d\,x\right )-\sqrt {a}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}\right )\,\sqrt {-\frac {-b+a\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {2\,\left (\sqrt {a}\,d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {b+a\,1{}\mathrm {i}}{4\,d^2}}-d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {\frac {b+a\,1{}\mathrm {i}}{4\,d^2}}\right )}{a\,1{}\mathrm {i}+b\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}-\sqrt {a}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,1{}\mathrm {i}}\right )\,\sqrt {\frac {b+a\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2),x)

[Out]

atan((2*(d*tan(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-(a*1i - b)/(4*d^2))^(1/2)*1i - a^(1/2)*d*tan(c + d*
x)^(1/2)*(-(a*1i - b)/(4*d^2))^(1/2)*1i))/(a + b*tan(c + d*x) - a^(1/2)*(a + b*tan(c + d*x))^(1/2)))*(-(a*1i -
 b)/(4*d^2))^(1/2)*2i + atan((2*(a^(1/2)*d*tan(c + d*x)^(1/2)*((a*1i + b)/(4*d^2))^(1/2) - d*tan(c + d*x)^(1/2
)*(a + b*tan(c + d*x))^(1/2)*((a*1i + b)/(4*d^2))^(1/2)))/(a*1i + b*tan(c + d*x)*1i - a^(1/2)*(a + b*tan(c + d
*x))^(1/2)*1i))*((a*1i + b)/(4*d^2))^(1/2)*2i + (4*b^(1/2)*atanh((b^(1/2)*tan(c + d*x)^(1/2))/((a + b*tan(c +
d*x))^(1/2) - a^(1/2))))/d

________________________________________________________________________________________